ECONOMIC FEASIBILITY STUDY OF REFUELING STATIONS FOR VESSELS USING LNG AS FUEL

Leonidas Chrysinas
Strathclyde University
Aim of the Study

➢ Motivations

✓ Environmental Regulations (Existing and Upcoming)

✓ Expectations for increase of HFO and MGO prices the following years

➢ Objective of the Study

✓ Estimation of demand and design an adequate LNG supply network

✓ Evaluation of the costs that will be made in the final part of the supply chain
Key Stages of the Study

- **Research - Statistical Data Collection**
 - Port Authorities
 - Statistical Services

- **Create Database** -(sea-web.com)
 - Initial grouping according to the type of ships
 - Further grouping according to key features of each ship
 - Capacity (i.e. DWT, TEU, ceu, berths)
 - Age
 - Total installed power (kW)
 - Service speed
Key Stages of the Study

- **LNG fuel demand estimation**
 - Assumptions for selecting ships shifted to the use of LNG
 - Selection of ships operating in areas with strict environmental emission limits (π.χ. SECA’s) “Short sea shipping”
 - Selection of younger ships (under 10 or 15 years)
 - Assumptions for the estimated volume of bunkering
 - Bunkering operation after 500 nautical miles for commercial vessels
 - Bunkering operation according to the exact distance that each class of coastal vessels covers
 - Selection of suitable dual fuel engines (MAN, Wärtsilä)
 - Calculations for demand of LNG and for the exact number of bunkering operations for each class of vessels both in annual and daily basis
 - Estimation for the total demand of LNG for each port
Key Stages of the Study

- **Selection of land-based storage tanks of LNG**
 - The basic criterion is the distance between the port and the LNG import terminal (Revithousa)
 - Leasing LNG storage space and providing to facilitate the bunkering operations of the terminal (i.e. Piraeus Port)
 - Land-based storage installation (i.e. Patras Port, Thessalonikis Port)

- **Selection of the appropriate equipment for the bunkering operations of LNG**
 - Criteria
 - Shipping industry overview
 - Estimated demand of LNG for each type of vessel
 - Estimated number of daily bunkering operation
 - Total demand of LNG
Key Stages of the Study

- Investment Proposal
 - Estimation of Investment and Operating Costs

- Selection of Financial Evaluation Criteria
 - Pay Back Period - PBP
 - Net Present Value - NPV
 - Internal Rate of Return - IRR

- Study Results
 - Econometric Results
 - Conclusions
 - Weighted Average Cost of Capital (WACC): 8%
 - The analysis does not include taxis
 - The time horizon of our investment was set to 40 years
Key Stages of the Study

Technical Part
- Gather Data
- Categorize according to vessels type
- Re-categorize according to DWT and age
- Using for retrofit vessels under 10 years old
- Choose suitable dual-fuel engine according to total installed power
- Calculate the average fuel consumption for each categories vessels
- Calculate the total fuel consumption of the vessels banker in the port
- Calculate the number and the volume of daily bunkering operations
- Having the annual demand of LNG
- Select suitable equipment for bunkering

Financial Part
- Calculate investment cost
- Calculate operational cost
- Calculate the surcharge per tonne LNG for the examined number of depreciation years
- Compare with the fridges of the alternative fuels
- Checking feasibility

Co-funded by the Marco Polo Programme of the European Union
Port of Piraeus

- Market Research - Statistical Data Collection
 - Vehicles Carrier - Car Terminal
 - 716 calls by 202 vessels
 - Container Ship - Container Terminal
 - 2,398 calls by 302 vessels
 - Cruise Ship - Passenger Terminal
 - 770 calls by 110 vessels
 - Ro-Pax Ship - Passenger Terminal
 - 4,293 calls by 31 vessels
Create Database

Vehicles Carrier

- Categorize in two groups according to the capacity
 - Class A (\(\leq 3.999\) ceu)
 - Class B (\(\geq 4.000\) ceu)

- Class A vessels mainly transfer vehicles between key ports and neighboring ports
- Class B vessels mainly transfer vehicles between different continents

We consider Class A and aged less than 10 years vessels ideal for using LNG as marine fuel
Create Database

Container Ship

- Categorize in three groups according to the capacity
 - Class A (0-1.999 TEU)
 - Class B (2.000-7.999 TEU)
 - Class C (≥ 8000 TEU)

- Class A vessels mainly operate to TEU transfer between key ports and neighboring ports
- Class B is a group between the other two.
- Class C vessels are used for lines between major continents

We consider that Class A and aged less than 10 years vessels ideal for using LNG as marine fuel
Port of Piraeus

Create Database

- Cruise ship
 - Categorize in two groups according to the capacity
 - Class A (≤ 999 berths)
 - Class B ($\geq 1,000$ berths)
 - More calls made by Class B vessels (63% more than Class A vessels)
 - The third quarter of year 2012, both classes present more arrivals with the cruise ships of Class A to have 125 out of 292 total calls while cruise ships from Class B had 183 out of 428 total calls

We consider that both Classes and aged less than 15 years vessels ideal for using LNG as marine fuel
Port of Piraeus

- Create Database
 - Passenger Ro-Ro Ship (Vehicles)
 - The segmentation has been made according to the route for year 2012
 - Cyclades
 - Crete
 - North Aegean
 - Dodecanese
 - The third quarter noted more calls and specifically 1.704 out of 4.293 annual calls.
 - The majority of the departures from port of Piraeus addressed to the Cyclades islands

We consider aged less than 15 years vessels ideal for using LNG as marine fuel
Estimated Demand of LNG

<table>
<thead>
<tr>
<th></th>
<th>Vehicles Carrier (≤3,999 ceu)</th>
<th>Container Ship (0-1.999 TEU)</th>
<th>Cruise Ship (≤999 berths)</th>
<th>Cruise Ship (≥1,000 berths)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required amount of fuel (m³)</td>
<td>80</td>
<td>95</td>
<td>145</td>
<td>450</td>
</tr>
<tr>
<td>Annual number of bunkering operations 2020</td>
<td>83</td>
<td>210</td>
<td>65</td>
<td>169</td>
</tr>
</tbody>
</table>
Port of Piraeus

Expected Annual Demand of LNG (2020)
<table>
<thead>
<tr>
<th>Type of Vessel</th>
<th>Expected Calls (2020)</th>
<th>Average Refuelling volumes (m3)</th>
<th>Percentage of vessels that will use LNG</th>
<th>Percentage of vessels that will make bunkering in Piraeus</th>
<th>Estimated number of bunkering operations</th>
<th>Annual Demand of LNG (m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Container Ship</td>
<td>1355</td>
<td>92,3</td>
<td>26%</td>
<td>60%</td>
<td>210</td>
<td>19.382,9</td>
</tr>
<tr>
<td>Small Passenger Cruise</td>
<td>292</td>
<td>143,5</td>
<td>37%</td>
<td>60%</td>
<td>65</td>
<td>9.384,5</td>
</tr>
<tr>
<td>Large Passenger Cruise</td>
<td>478</td>
<td>450,2</td>
<td>59%</td>
<td>60%</td>
<td>169</td>
<td>75.898,6</td>
</tr>
<tr>
<td>Small Vehicles Carrier</td>
<td>395</td>
<td>77,7</td>
<td>33%</td>
<td>60%</td>
<td>78</td>
<td>6.009,7</td>
</tr>
<tr>
<td>Small Passenger Ro-Ro Ship (Vehicles) Crete</td>
<td>1332</td>
<td>89,6</td>
<td>0%</td>
<td>100%</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Large Passenger Ro-Ro Ship (Vehicles) Crete</td>
<td>756</td>
<td>188,8</td>
<td>60%</td>
<td>100%</td>
<td>425</td>
<td>80.195,5</td>
</tr>
<tr>
<td>Small Passenger Ro-Ro Ship (Vehicles) Cyclades</td>
<td>664</td>
<td>43,8</td>
<td>44%</td>
<td>100%</td>
<td>502</td>
<td>21978,0</td>
</tr>
<tr>
<td>Large Passenger Ro-Ro Ship (Vehicles) Cyclades</td>
<td>708</td>
<td>58,7</td>
<td>46%</td>
<td>100%</td>
<td>348</td>
<td>20431,6</td>
</tr>
<tr>
<td>Small Passenger Ro-Ro Ship (Vehicles) North Aegean</td>
<td>116</td>
<td>85,4</td>
<td>0%</td>
<td>100%</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Large Passenger Ro-Ro Ship (Vehicles) North Aegean</td>
<td>408</td>
<td>132,5</td>
<td>44%</td>
<td>100%</td>
<td>180</td>
<td>23849,8</td>
</tr>
<tr>
<td>Small Passenger Ro-Ro Ship (Vehicles) Dodecanese</td>
<td>238</td>
<td>78,4</td>
<td>0%</td>
<td>100%</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Large Passenger Ro-Ro Ship (Vehicles Dodecanese)</td>
<td>274</td>
<td>241,7</td>
<td>60%</td>
<td>100%</td>
<td>164</td>
<td>39742,5</td>
</tr>
<tr>
<td>Total</td>
<td>2.141</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>296.872,9</td>
</tr>
</tbody>
</table>

Port of Piraeus
Port of Piraeus

- **Selection of Land Storage Tanks of LNG**
 - Use of the LNG Import Terminal (Revithousa)

- **Selection of Refuelling Equipment for LNG**
 - 1 “bunker vessel” 3,000 m³
 - 4 specially designed trucks 50 m³
Investment Proposal
- Estimation of Investment and Operating Costs
 - Initial Investment Costs 64,5 mil. €
 - Operating Costs 2020 11,00 mil. €
 - Operating Costs 2030 13,50 mil. €

Study Results
- Econometric Results
 - Cost per ton of LNG for 10 years repayment PBP
 - 159,81 €/ton LNG
 - Internal Rate of Return- IRR
 - 17%
 - Net Present Value- NPV
 - 76 mil. €
Port of Piraeus

Study Results

Conclusions

- Costal vessels cover more than 50% of the annual demand of LNG
- Leasing LNG storage space at the import terminal in Revithousa is a feasible solution as it makes the investment proposal financially favourable since it requires the creation of land-based storage facilities, reducing the initial capital investment.
- A bunker vessel (3,000 m³ capacity) costs 24 mil. € (extremely high)
- Fuel prices at the port of Piraeus 573 €/ton LNG, 540 €/ton HFO και 700 €/ton MGO
- There should be grants from financial institutions, the EU
- The EU Member States to create incentives for investments by companies to develop onshore LNG supply infrastructure
Market Research - Statistical Data Collection

- Ro-Pax Ship - Passenger Terminal
 - 2,074 arrivals by 27 vessels
Port of Patras

Create Database

- Ro-Pax Ship

 - The segmentation has been made according to the route for year 2012
 - Ancona
 - Venice
 - Bari
 - Brindisi
 - Ionian Islands

 - The majority of the departures addressed to the port of Ancona

We consider aged less than 15 years vessels ideal for using LNG as marine fuel
Estimated Demand of LNG

<table>
<thead>
<tr>
<th></th>
<th>Ro-Pax Ship Ancona</th>
<th>Ro-Pax Ship Venice</th>
<th>Ro-Pax Ship Bari</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required amount of fuel (m³)</td>
<td>295</td>
<td>195</td>
<td>95</td>
</tr>
<tr>
<td>Annual number of bunkering operations 2020 (2030)</td>
<td>412 (686)</td>
<td>10 (16)</td>
<td>210 (351)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Ro-Pax Ship Brindisi</th>
<th>Ro-Pax Ship Ionian Sea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required amount of fuel (m³)</td>
<td>65</td>
<td>15</td>
</tr>
<tr>
<td>Annual number of bunkering operations 2020 (2030)</td>
<td>121 (202)</td>
<td>0 (0)</td>
</tr>
</tbody>
</table>
Port of Patras

- Estimation of Demand of LNG
 - 2020
 - 150,500 m³ LNG
 - 753 Bunkering Operations
 - 2030
 - 251,000 m³ LNG
 - 1,255 Bunkering Operations

- Selection of Land Storage Tanks of LNG
 - Installation of Land-based storage tank with total capacity 10,000 m³

- Selection of Refuelling Equipment for LNG
 - 1 “bunker vessel” 1,000 m³
 - Capability of refuelling by land based storage tank via pipeline
Investment Proposal

- Estimation of Investment and Operating Costs
 - Initial Investment Costs 80,2 mil. €
 - Operating Costs 2020 9,8 mil. €
 - Operating Costs 2030 13,9 mil. €

Study Results

- Econometric Results
 - Cost per ton of LNG for 10 years repayment PBP
 - 319,00 €/ton LNG
 - Internal Rate of Return- IRR
 - 17 %
 - Net Present Value- NPV
 - 112.8 mil. €
Port of Patras

Study Results

- Conclusions
 - The vessels that cover the route Patra-Ancona gather the higher annual demand of LNG (120,000 m³)
 - Installation of a land-based storage tank with 10,000 m³ capacity (High investment cost 23 mil. €)
 - A bunker vessel (1,000 m³ capacity) costs 20 mil. € (extremely high)
 - Fuel prices at the port of Patras 731 €/ton LNG, 595 €/ton HFO και 770 €/ton MGO
 - There should be grants from financial institutions, the EU
 - The EU Member States to create incentives for investments by companies to develop onshore LNG supply infrastructure

Co-funded by the Marco Polo Programme of the European Union
Port of Thessaloniki

- Market Research - Statistical Data Collection

 - Container Ship
 - 499 calls by 56 vessels
 - General Cargo Ship
 - 301 calls by 186 vessels
 - Tanker Ship
 - 336 calls by 121 vessels
 - Bulk Carrier Ship
 - 475 calls by 156 vessels
Create Database

- Container Ship
 - Categorize in two groups according to their capacity
 - Class A (0-1,999 TEU)
 - Class B (2,000-7,999 TEU)

We consider that Class A and aged less than 10 years vessels ideal for using LNG as marine fuel
Create Database

- Tanker Ship

 - Categorize in two groups according to their Deadweight (DWT)
 - Class A (≤24.999 tons)
 - Class B (≥25.000 tons)

We consider that Class A and B and aged less than 10 years vessels ideal for using LNG as marine fuel
Create Database

- General Cargo Ship

 - Categorize in two groups according to their Deadweight (DWT)
 - Class A (≤4.999 tons)
 - Class B (≥5.000 tons)

We consider that Class A and B and aged less than 10 years vessels ideal for using LNG as marine fuel.
Create Database

Bulk Carrier Ship

- Categorize in two groups according to their Deadweight (DWT)
 - Class A (≤34.999 tons)
 - Class B (≥35.000 tons)

We consider that Class A and B and aged less than 10 years vessels ideal for using LNG as marine fuel
Port of Thessaloniki

Estimated Demand of LNG

<table>
<thead>
<tr>
<th></th>
<th>Container Ship (0-1.999 TEU)</th>
<th>Tanker Ship (<25.000 dwt)</th>
<th>Tanker Ship (≥25.000 dwt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required amount of fuel (m³)</td>
<td>80</td>
<td>40</td>
<td>100</td>
</tr>
<tr>
<td>Annual number of bunkering operations 2020</td>
<td>31</td>
<td>39</td>
<td>31</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>General Cargo (<5.000 dwt)</th>
<th>General Cargo (≥5.000 dwt)</th>
<th>Bulk Carrier (<35.000 dwt)</th>
<th>Bulk Carrier (≥35.000 dwt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required amount of fuel (m³)</td>
<td>16</td>
<td>40</td>
<td>30</td>
<td>90</td>
</tr>
<tr>
<td>Annual number of bunkering operations 2020</td>
<td>15</td>
<td>11</td>
<td>40</td>
<td>24</td>
</tr>
</tbody>
</table>
Port of Thessaloniki

- Estimation of Demand of LNG
 - 2020
 - 11,350 m³ LNG
 - 191 Bunkering Operations

- Selection of Land Storage Tanks of LNG
 - Installation of Land-based storage tank with total capacity 5,000 m³

- Selection of Refuelling Equipment for LNG
 - 1 specially designed trucks 50 m³
 - Capability of refuelling by land based storage tank via pipeline
Investment Proposal
- Estimation of Investment and Operating Costs
 - Initial Investment Costs 16.7 mil. €
 - Operating Costs 2020 1.5 mil. €

Study Results
- Econometric Results
 - Cost per ton of LNG for 10 years repayment PBP 765.78 €/ton LNG
 - Internal Rate of Return- IRR 14%
 - Net Present Value- NPV 11.8 mil. €
Port of Thessaloniki

- Study Results
 - Conclusions
 - Large tanker ships and container ships gather the highest annual demand of LNG with 3400 m³ and 2500 m³ respectively
 - A bunker vessel (1,000 m³ capacity) costs 20 mil. € (extremely high)
 - Fuel prices at the port of Thessaloniki 1178 €/ton LNG, 595 €/ton HFO και 770 €/ton MGO
 - There should be grants from financial institutions, the EU
 - The EU Member States to create incentives for investments by companies to develop onshore LNG supply infrastructure
Conclusions

- **High and/or Volatile LNG Price**
 - May Lead to Almost Zero Orders for LNG Fuelled Vessels in Future
 - Make Retrofitting of Middle Aged Vessels not Feasible in Financial Terms
 - Turn Existing LNG Fuelled Projects to “Toxic Investments”

- **Sustainability**
 - The Use of LNG as Fuel will Increase Demand and Sooner or Later the Price. Some Say that LNG Production Might not Meet Demand by 2030.
 - Uncertainties on LNG Price and Spread are Present Although Oil Indexed Prices are Less Volatile and do not Exhibit Seasonality
Conclusions

- **Ability to Manage LNG Price and Spread**
 - Political Means to Manage LNG & LSF Spread
 - Use of Risk Management Tools. Risk Management can do very Little to Reduce Variability, but can be very Effective in Reducing Uncertainty for those Involved in Risk-Taking Decisions

- **Sustainable Financing is the Answer:**
 - Know & Avoid Catastrophic Risks
 - Impugn Greed For Profits Or Phobic Attitudes!!
 - Technocratic Criteria In Financing
 - Establish Formal Procedures For Rating Corporate Performance and Investment Evaluation
Conclusions

- Also by 2020 / 2030:
 - Hopefully Economy will Recover Starting a New Shipping / Shipbuilding Cycle
 - Economies of scale and widespread of LNG would reduce Equipment Cost
 - There is Time to Solve all Technical Issues and Train an adequate Number of Skilled Seafarers

- Manage Small Scale LNG Terminals issue:
 - Reveal Demand and Design a Sufficient Bunkering Network.
 - Market LNG Solution to Private Equity Funds or Sovereign Funds.
 - Special Funds and Companies with Excess Liquidity are Seeking for Energy Related Projects.
THANK you!