Understanding Ship Operations

TrainMoS II

Dr Charlotte Banks
The results presented are from the Conference paper:

Understanding ship operating profiles with an aim to improve energy efficient ship operations

Conference: Shipping in Changing Climates 2014

Authors: Charlotte Banks, Osman Turan, Atilla Incecik, G. Theotokatos, Sila Izkan, Catherine Shewell, Xiaoshuang Tian
Contents

• Introduction
• Case data
• Operating profiles
 • Voyage type distribution
 • Speed distribution
 • Draft distribution
• Usefulness of understanding
• Conclusions
Introduction

- Energy efficiency has always been an important factor to minimise ship operational costs, **YET** it has not always been a focus during design and operation

Over the past years there has been increased pressure to reduce anthropogenic carbon emissions with an aim to mitigate Climate Change. This has coincided with the global financial crisis

1st January 2013 maritime energy efficiency regulations entered into force
- The Energy Efficiency Design Index, EEDI,
- The Ship Energy Efficiency Management Plan, SEEMP
Case Data

The data collected and used for the analysis consists of:

- ‘noon reports’
 - recorded each day at noon whilst full away sailing at sea

- ‘port reports’ and other reports
 - recorded on approach to port, on arrival, daily in port, on departure

Example fields include:

- Report date time
- Report type
- Voyage type
- Speed
- Main engine heavy fuel oil consumption
- Auxiliary engine heavy fuel oil consumption
- Main engine marine diesel oil consumption
- Auxiliary engine marine diesel oil consumption
- Mean draft

Labelling of fields varies within reports
Mean draft values were only contained in a few reports.
 - In some cases it was possible to obtain and correlate the draft data from another data sources, but this was not possible for all of the case ships

There were differences in the data sets for each ship, even for the same companies

Many records contained missing values

Some zero values could be considered unreasonable

Some values were unreasonable
 - Including human error: imprecise observations, process and/or transcription error
Case Data

The record sets for each ship were obtained from four different companies:

- 4 Bulk Carriers
- 1 Handysize tanker
- 4 Aframax tankers
- 5 Suezmax tankers
- 2 Post Panamax Container ships
- 4 Post Panamax plus Container ships
For all graphs there does not appear to be a strong increasing or decreasing trend over the years.
Larger tankers spend less time in port

Larger tankers spend more time laden

Handysize tankers spend less time in ballast
Operating Profiles

Voyage type distribution

- The handysize tanker makes more voyages in a year

- There are differences in the time spent in port
Operating Profiles

Voyage type distribution

- No ballast run
 - The % in ballast shown is not considered normal operation and can be attributed to two individual voyages

- The Post Panamax Plus container vessels spend less time in port
Operating Profiles

Speed distribution

- The bulk carriers operate faster in ballast than in laden
- Over the years the most common operating speed has decreased and operational speeds have become more distributed towards lower speeds
- Loaded speeds have become more distributed than ballast speeds
Operating Profiles

Speed distribution

- Speeds have not changed dramatically between 2008 and 2011 but the distribution has moved towards lower speeds.
- This is most predominant for the case Aframax tankers
Operating Profiles

Speed distribution

- Data was available from 2006 to 2012 for the case container vessels.

- There is a very clear increase in time spent at lower operational speeds.
Operating Profiles

Draft distribution

- Ballast drafts are relatively constant (restricted by propeller immersion)
- Operational mean drafts (cargo loaded) range between 60%/70% and 100%
Usefulness of understanding profiles

• Operating profiles can be used for:
 – For modelling and estimating carbon emissions
 – Improving ship design by selection of the most appropriate parameters for operational profiles
 – Improving ship design by designing for a range of design points
 – Improving ship operation by considering the most appropriate cost effective energy efficient measures for the current actual operation of ships
Conclusions

• The amount of time spent in port, sailing laden and sailing in ballast varies for each ship type

• Over the past three years specifically, a wider range of operational speeds have been observed and the distribution has shifted towards lower speeds.

• There is little distribution of drafts used whilst sailing in ballast

• There is a range of operational drafts utilised when laden
 – From fully loaded to 70% for the case Aframax tankers, 77% for the case Suezmax tankers and 60%, and Post Panamax Plus container vessels